Methods of Analyzing Synthetic Fuels Onboard for Data Collection and Indication CHEMICAL ENGINEERING Jayson Sumabat, Emily Crum, Nicholas Lai, Maeve Ryan, Liz Helmer, Jens Pfeiffer

Introduction

Background

- Boeing is committed to sustainable aviation fuel (SAF) compatible aircraft by 2030
- In operation both traditional petroleum fuels and SAF will be used and mixed on aircraft
- Petroleum fuels and SAF have different mass and energy densities which must be known for safe operation
- Measurement of density, dielectric constant, fuel level, and hydrocarbon composition are needed
- No sparking hazards are allowed in the tank

Current State

- Currently all above properties are measured except composition
- Newly developed fiber optic methods exist to measure dielectric constant but are not flight proven
- Laboratory instruments exist to determine fuel composition, but are not designed for in flight use

Goals

- Identify and rank techniques to determine of density, dielectric constant, fuel level, and hydrocarbon composition of traditional and SAF blends in an aircraft
- [Stretch goal] Design a test rig to determine the validity of the proposed design

List of Measuring Methods

Measuring methods considered from literature review

Height Measuring					
Multi-layer Wireless Sensor					
4 Layer Coaxial Cable					
Fiber Optic Sensor					
Density Measuring					
Refractive Index Sensor with 1/3 Rule					
Gamma Ray, Ray Attenuation					
Hydrostatic pressure					
Dielectric Constant Measuring					
Refractive Index Sensor					
Calculate from density through 1/3 rule					
Capacitive sensor					
Composition Analysis					
FTIR Spectroscopy					
Quartz Crystal Microbalance					
Mass Spectroscopy					
"2D" Gas Chromatograph					
Dielectric Spectroscopy					

- design
- After we combined the methods together, we noticed that some compatibility between each methods is important
 - Individual method might have a lower score but together as a whole can be a more cohesive system
- We also found that methods initially given lower scores could be modified to rank higher. For example, the GC x GC system can be stripped down from a laboratory configuration to a lightweight on aircraft configuration, improving the score.

Example Score Evaluation for Fiber Optic Sensor

	Safety	Accuracy/ Precision	Physical Implementation	Weight	Material Costs	Durability/ Maintenance	Sustainability / Ethics	Sch
Adjusted Score	7	5.7	5.7	5.7	4	4	3	

Methods that were selected for preliminary design:

Height

- Density
- Using the **refractive index sensor**, fuel density can be determined using the one third rule (see right) For added redundancy, a **closed loop manometer** can also be added to the walls of the tank to determine density using
- hydrostatic pressure
- **Dielectric Constant**
- From the fuel's measured **refractive index**, a **correlation** can be used to determine dielectric constant **Hydrocarbon Composition**
 - A stripped two-dimensional gas chromatography located outside the tank can be used to measure the fuel's composition with a polar and nonpolar column in series
 - Since it is stripped, only **mandatory components** present to reduce weight and improve implementation feasibility

- A concept selection matrix is a highly effective way to narrow down options when so many factors need to be accounted for
- Systems level thinking is key to creating an effective means of collecting all needed data
- More testing of the preliminary design would help future teams determine its effectiveness and areas for improvement, specifically with the fiber optics and hydrostatic pressure portions
- While our experiments were unsuccessful, we learned a lot about systems manufacturing and the strength of the sensors needed for future capstone groups (failing forward for future success)

Our Boeing mentors for their support and guidance: Dean Cox, Callyn F. Couture, David M. Sims, and Bart Stevens

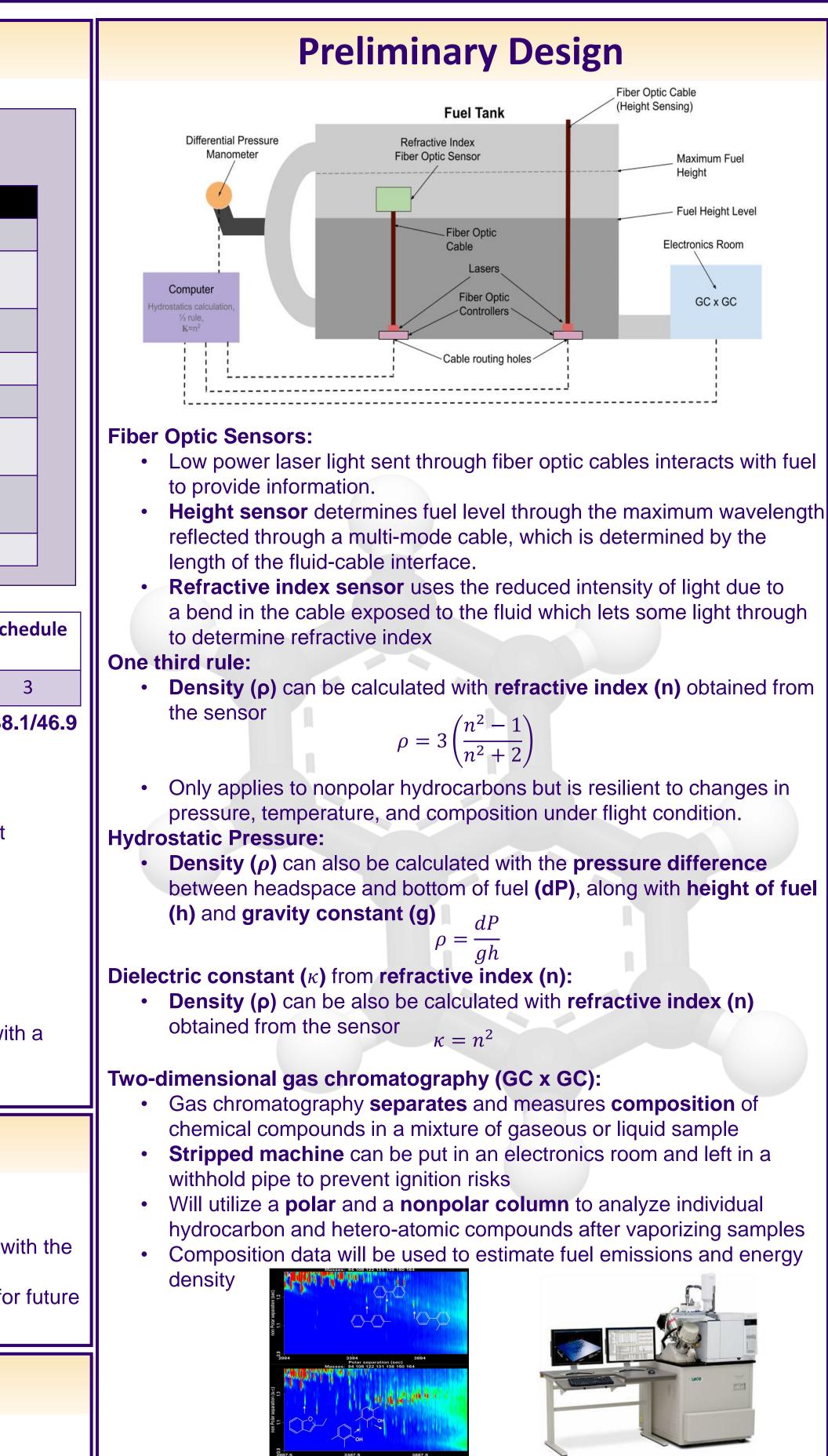
Concept Selection

A literature review was performed to identify potential methods for fuel level, density, dielectric constant, and hydrocarbon composition. Each method was given a score of 1-7 for every criteria seen on the right, which was then multiplied by the scaling factor listed in the right column to give a final rating. An example of this scoring evaluation can be seen below for the use of fiber optic sensing for measuring fuel level: Measuring methods with the highest score were selected for the initial

Scaling Factor
1
0.95
0.95
0.95
0.8
0.8
0.75
0.5

CONCEPT SELECTION MATRIX

Adjusted Score Total: 38.1/46.9


Fiber optic sensor used in tandem with refractive index sensors placed at the top and bottom of the tank for measuring height

Key Takeaways

Acknowledgements

UNIVERSITY of WASHINGTON

